
A neural network primer 247
Ref: Abdi, H. (1994). A neural Network Primer. Journal of Biological System, 2(3), 247{283.A NEURAL NETWORK PRIMERHERV�E ABDISchool of Human Development: The University of Texas at Dallas,MS: GR.4.1., Richardson, TX75083{0688, U.S.A.&Universit�e de Bourgogne at Dijon, 21000, Dijon, FranceReceived July 1993Revised March 1994ABSTRACTNeural networks are composed of basic units somewhat analogous to neurons. These unitsare linked to each other by connections whose strength is modi�able as a result of a learn-ing process or algorithm. Each of these units integrates independently (in parallel) theinformation provided by its synapses in order to evaluate its state of activation. The unitresponse is then a linear or nonlinear function of its activation. Linear algebra concepts areused, in general, to analyze linear units, with eigenvectors and eigenvalues being the coreconcepts involved. This analysis makes clear the strong similarity between linear neural net-works and the general linear model developed by statisticians. The linear models presentedhere are the perceptron, and the linear associator. The behavior of nonlinear networkscan be described within the framework of optimization and approximation techniques withdynamical systems (e.g., like those used to model spin glasses). One of the main notionsused with nonlinear unit networks is the notion of attractor. When the task of the networkis to associate a response with some speci�c input patterns, the most popular nonlineartechnique consists of using hidden layers of neurons trained with back-propagation of error.The nonlinear models presented are the Hop�eld network, the Boltzmann machine, theback-propagation network, and the radial basis function network.Keywords: neural networks, general linear model, perceptron, radial basis function, Hop-�eld network, Boltzmannmachine, back-propagation network, eigenvector, eigenvalue, prin-cipal component analysis, attractors, optimization.Even though research in neural modeling started circa 1940 (i.e., McCulloch & Pitts in 1943[48]), there was little active development of the �eld prior to the late �fties and early sixtieswhen Rosenblatt introduced the perceptron in 1958 [69], (a close cousin of the perceptron wasWidrow's adaline introduced in 1960 [84]). These early models already posess most of the

248 Abdi
1/0

1/0

1/0

1/0

Σ

Σ

Σ

RETINA OUTPUT
LAYER

Connections

{0/1}

{0/1}

{0/1}

Modifiable
Synapses

Fig. 1. | The architecture of a typical perceptron. The perceptron is composed of two layersof cells connected by synapses modi�able through learning. The input layer is named the retina. Thecells can take only binary values (e.g., 0 or 1).essential features of more contemporary neural networks. They are composed of simple basicunits loosely comparable to neurons. Perceptrons have essentially two layers of cells: an inputlayer which was called the (arti�cial) retina of the perceptron, and an output layer. Learningin these networks takes place at the synaptic junctions between the neurons of the input layerand the neurons of the output layer (in the original paper the output layer was called the\association layer"). At �rst, the performance of these early networks attracted quite a lot ofattention. However, their limitations soon became clear.Rosenblatt [70] and Minsky and Papert [53] showed that these earlier neural networks wereable to learn associations between a set of inputs and a set of outputs only if the output is alinear transformation of the input. Essentially, these networks are equivalent to linear regressionand to discriminant analysis. As a consequence, their use as a model for human behavior wasof moderate appeal. In addition, their computational power was only mediocre when comparedto the digital computers available at the time. Considering the earlier successes of the symbolicapproach (i.e., Arti�cial Intelligence), it was tempting, then, to concentrate resources on thesymbolic approach rather than on neural networks. This is, indeed, what happened (for a moredetailed history of the subject, see [10, 3]). Despite the shortcomings of these early neuralnetwork models, they can solve important problems, and have the additional advantage ofsimplicity. As a consequence, I will use them in this paper to introduce neural networks andsome of their main characteristics.The late seventies and early eighties witnessed a renaissance of neural networks. The manyreasons for this resurgence include: 1.) the general disappointment with the performance ofthe symbolic approach; 2.) the availability of cheap but powerful (micro) computers; 3.) the

A neural network primer 249
a j = Σ

i
xi wijw

w

x

x

x

i

I

0

w0j

ij

Ij

o = f (aj j)

Fig. 2. | The output cell of a perceptron. The inputs are noted xi, the synaptic weights arenoted wi;j , the total activation of the cell is noted aj , its response or output, noted oj , is equal to 0if aj � 0 and 1 if aj > 0.development of nonlinear models of neural networks; and 4.) the (re)discovery of techniques fortraining hidden layers of neurons.The purpose of this introductory paper is to present some representative members of themain families of neural networks. I begin with the perceptron, which can be used to introducethe general architecture of a neural net. In the years since its introduction, several alternativearchitectures have been proposed to overcome the limitations of the perceptron. I describetwo of these alternatives under the heading of nonlinear networks: the very popular back-propagation network, and the radial basis function network, a relative newcomer to the �eld ofneural networks that is used by several papers in this volume. Most neural networks can beinterpreted as associators: their task is to associate a given input pattern with a given response.A particular case of associators, called auto-associators, occurs when the input pattern is thesame pattern as the response. In addition to the linear auto-associator, two nonlinear associatorsare described in this paper: the Hop�eld network and the Boltzmann machine.

250 Abdi1. The PerceptronThe perceptron can be considered as the �rst important implementation of arti�cial neuralnetworks. It was created in the �fties by Rosenblatt [68, 69]. As its name indicates, theperceptron was designed to mimic or to model perceptual activities. The main goal was toassociate binary con�gurations (i.e., patterns of [0; 1] values) presented as inputs on a (arti�cial)retina with speci�c binary outputs. Hence, esssentially, the perceptron is made of two layers (seeFigure 1): the input layer (i.e., the \retina") and the output layer. The architecture, originallydesigned by Rosenblatt in 1957 [68], was more complex than this, but in fact is equivalent tothe two-layer description given here (cf. also [3, 9, 10]). The activation of the cells of the inputlayer is transmitted to the cells of the output layer through connections (\synapses") whichcan change the intensity of the signal (by multiplying the incoming signal by a \weight" or\synaptic e�cacy", see Figure 2). Hence, the response of the perceptron is a function of thestimulus applied to the cells of the input layer and of the weights of the connections. The cells ofthe output layer compute their state of activation as a function of the stimulation they receivethrough the synapses, and then give a (binary) response as a function of their state of activation.More formally, the response of the output cells depends upon their level of activation whichis computed as the sum of the weights coming from active input cells. The response is thenobtained by thresholding the activation (i.e., the cell will be in the active state only if itsactivation level is larger than a given threshold).Speci�cally, the activation of the j-th output cell is computed asaj = IXi xiwi;j ; (1.1)with:� aj : activation of the j-th output cell.� xi: state of the i-th cell of the retina (0 or 1).� wi;j: value of the weight connecting the i-th cell of the retina to the j-th output cell.The output cells will then take either the active state (i.e., give the response 1) or theinactive state (i.e., give the response 0) if their level of activation is greater or less than theirthreshold noted #j (quite often #j is set to 0). Precisely, the response of the j-th output cell isgiven as oj = � 0 for aj � #j1 for aj > #j : (1.2)The threshold #j is modi�able by learning (like the weights), as a consequence its functionis almost equivalent to a weight. Actually, thresholding is often implemented by setting an inputcell always active (the 0-th input cell) so that the weight w0;j is equal to �#j . The term of

A neural network primer 251response bias is often used as a synonym for threshold. This works because Equation 1.2 is thenrewritten as (with w0;j being equal to �#j):oj = � 0 for aj + w0;j � 01 for aj + w0;j > 0 : (1.3)Equivalently, #j can be computed as w0;j if cell 0 is \clamped" to the value �1.1.1. Learning ruleThe main problem for the perceptron is to learn how to adjust the synaptic weights in orderto give the desired response for a given stimulus. For example, a perceptron with two inputcells and one output cell can be used to implement logical functions if the stimuli given as inputconsist of the set 0 01 00 11 1and the output is constituted by the 4 binary responses corresponding to the function to beimplemented. For example, the logical or function is given by this pattern of association0 0 7�! 01 0 7�! 10 1 7�! 11 1 7�! 1 : (1.4)Learning in perceptrons takes place at the synaptic level by changing the weights of theconnections between the cells of the retina and the output cells. There are several possibleprocedures that a perceptron can use in order to change iteratively the synaptic weights toproduce a set of desired responses to a particular set of inputs. The most famous one is knownunder several names: the Widrow-Ho� learning rule (cf. [84, 75, 56, 21]), the Delta rule [71], ormore simply the perceptron learning rule [30].In order to use the Widrow-Ho� learning rule, the output cells of the perceptron must beprovided with the correct response so that they can compute an error signal. This type oflearning is referred to as supervised learning. The output cells must also know the state of theinput cells (i.e., they need to know what synapses are activated by the current stimulation).The output cells, however, do not need to know the response of the other output cells. Hencethis learning rule can be seen as purely local, because the cells need to know only the localinformation in order to learn.

252 AbdiFor a perceptron, the Widrow-Ho� learning rule is very simple. First, a cell will learn onlyif it makes a mistake (i.e., the error signal is not zero). Because the output is binary, there areonly two possible mistakes. Either the cell should be o� and it is on, or the cell is o� when itshould be on. If the cell is on instead of o�, this means that the cell's activation is too high,and therefore, that it has assigned too much importance (i.e., too large a weight) to the cellsfrom the retina that are in the on state. An obvious solution to this problem is to decrease theweights associated with these cells from the retina. Likewise, if the cell is o� when it shouldbe on, its activation is too low, and so, the weights of the retinal cells that are on should beincreased to correct the problem.Learning for a set of stimuli is implemented by \presenting" (i.e., computing the outputassociated with a given input pattern) the individual stimuli to the perceptron several times ina random order. The weights are adjusted as described previously and the learning procedureterminates as soon as the perceptron makes no error. The synaptic weights will stop changingas soon as the perceptron performs perfectly, because the perceptron learns only when makinga mistake.More formally, the Widrow-Ho� learning rule is written as:w(t+1)i;j = w(t)i;j + �(tj � oj)xi = w(t)i;j +�wi;j ; (1.5)with� �wi;j: correction to add to the weight wi;j.� xi: value (0 or 1) of the i-th retinal cell.� oj : response or output of the j-th output cell.� tj : target response (or correct desired response).� w(t)i;j : weight of the synapse between the i-th retinal cell and the j-th output cell at time(t) [i.e., the exponent (t) give the number of the current iteration]. The values of w(0)i;j aregenerally initialized to small random values.� �: a small positive constant generally referred to as the learning constant. Its functionis examined in greater detail in the discussion of linear associative memory. It should benoted, however, that choosing � is a delicate problem in training a neural network. Inseveral cases, the value of � is dependent upon the learning history. Learning will startwith relatively large values of � which will be decreased as learning progresses. So, at �rstthe system makes important corrections to the synaptic weights. When the values of � getrelatively small this amounts to making �ne changes to the synaptic weights.

A neural network primer 2531.2. An example: learning the logical function orThe purpose of this section is to provide a demonstration of the ability of the perceptron toresolve a linearly separable function. Let's suppose that we want to teach a perceptron thelogical function or, whose truth table is:0 0 7�! 01 0 7�! 10 1 7�! 11 1 7�! 1 :This perceptron is composed of three input cells: two cells for the values of the argumentof the logical function, plus one cell (i.e., x0) to implement thresholding (cf. Equation 1.3), andone output cell (see Figure 2). This is equivalent to implementing the following ternary truthtable: 1 0 0 7�! 01 1 0 7�! 11 0 1 7�! 11 1 1 7�! 1 :Supposing that the synaptic weights (i.e., the wi's) are initialized to zero values, they canbe represented by a 3� 1 matrix W:W = 24w0 = �#w1w2 35 = 24 00035 : (1.6)Suppose, now, that the �rst randomly chosen association is the 4-th one (i.e., the perceptronshould produce the value 1 when its retinal cells are presented with the stimulus [1; 1; 1]). Theactivation of the output cell is given by:a =Xi xiwi = (1� 0) + (1 � 0) + (1� 0) = 0 (1.7)(because there is just one output cell in this example, the notation is somewhat simpler, forexample aj becomes a, wi;j becomes wi, and so on). The (incorrect) response of the perceptronis o = 0(cf. Equation 1.2).The error is the di�erence between the target value (1) and the response of the outputcell (0). Suppose that the learning constant � is set to the value � = :1, and the Widrow-Ho�

254 Abdilearning rule is used. Then, from Equation 1.5, the correction for the synapses from the retinalcells to the output cell is: �w0 =�(t� o)x0 = :1� (1� 0)� 1 = :1�w1 =�(t� o)x1 = :1� (1� 0)� 1 = :1�w2 =�(t� o)x2 = :1� (1� 0)� 1 = :1 : (1.8)When the correction is applied,W becomes:24w0 = :1w1 = :1w2 = :135 : (1.9)Suppose, now, that the �rst stimulus (i.e., [1; 0; 0]) is presented to the perceptron. Theactivation of the output cell is given by:a =Xi xiwi = (1 � :1) + (0 � :1) + (0� :1) = :1 ; (1.10)and the response of the output cell is o = 1 :The correction to apply to the synaptic weights is�w0 =�(t� o)x0 = :1� (0� 1)� 1 = �:1�w1 =�(t� o)x1 = :1� (0� 1)� 0 = 0�w2 =�(t� o)x2 = :1� (0� 1)� 0 = 0 (1.11)When the error correction rule is applied,W becomes:24w0 = 0w1 = :1w2 = :135 : (1.12)With this set of weights, the perceptron is now able to give perfect answers for the orproblem.

A neural network primer 255x

x

2

1

{0/1}

{1/0}{0/0}

{1/1}

ANDFig. 3. | The logical function and is linearly separable. It is possible to draw a line separat-ing the white circles from the dark ones.x

x

2

1

{0/1}

{1/0}{0/0}

{1/1}

XORFig. 4. | The logical function xor is not linearly separable. There is no way to draw a lineseparating the white circles from the dark ones.1.3. Evaluation of the perceptronAs the previous example makes clear, the perceptron is able to learn. The question addressedin this section is \What is it able to learn?" Because the activation of the output cell is a linearcombination of the retinal input cells, the perceptron can learn only to discriminate linearlyseparable categories (this is illustrated in Figure 3). If the categories are linearly separable,then if the learning constant � is small enough, convergence is guaranteed (cf. [3, 12] for a\modern" proof of the perceptron convergence theorem).As Minsky and Papert showed in their famous book [53], it is quite easy to �nd examples ofinteresting nonlinearly separable functions. Probably the most well known of these is the xorfunction (the \exclusive or"). This problem is illustrated in Figure 4, and corresponds to the

256 Abdi
w=θ θ=0=1 -2
w= 1

w= 1

output
cellhidden

cell

w=

w=

.6

.6

input
layerFig. 5. | A perceptron with a hidden layer is able to solve the xor problem.following truth table: 0 0 7�! 01 0 7�! 10 1 7�! 11 1 7�! 0 : (1.13)In order to show that the logical function xor is not linearly separable, suppose that wehave a perceptron with 2 retinal cells and one output cell. The synaptic weights are notedw1 and w2 (to make the argument easy to follow, the threshold is supposed, without loss ofgenerality, to be 0). The association of the input pattern [1; 0] to the response 1 implies thatw1 > 0 : (1.14)Similarily, the association of the input pattern [0; 1] to the response 1 implies thatw2 > 0 : (1.15)Adding together Equations 1.14 and 1.15 givesw1 + w2 > 0 : (1.16)Now if the perceptron gives the response 0 to the input pattern [1; 1], this implies thatw1 + w2 � 0 : (1.17)Clearly, the last two equations contradict each other, hence no set of weights can solve the xorproblem.

A neural network primer 2571.4. Linearly separable or not? Is it really a problem?In the early days of neural networks, much was made of the perceptron's inability to solve such aseemingly simple nonlinear transformation as the xor problem. More recently, however, severalalgorithms (the most popular of which is back-propagation) make it possible for a perceptronwith at least one hidden layer to implement the xor logical function. This is illustrated inFigure 5, and in Table 1. However, in the years following Rosenblatt's introduction of theperceptron, there were no algorithms available to train the hidden layer. In fact, Minsky andPapert [53], mistakenly believed that no such algorithm could exist.Activation of the CellsActivation of the Activationinput hidden cell o of the output cell(# = 1) (# = 0)0 0 (0 � :6) + (0 � :6) = 0:0 0 (0 � 1) + (0 � 1) + (0 ��2) = 00 1 (0 � :6) + (1 � :6) = 0:6 0 (0 � 1) + (1 � 1) + (0 ��2) = 11 0 (1 � :6) + (0 � :6) = 0:6 0 (1 � 1) + (0 � 1) + (0 ��2) = 11 1 (1 � :6) + (1 � :6) = 1:2 1 (1 � 1) + (1 � 1) + (1 ��2) = 0(o is the response of the hidden cell after \thresholding")Table 1:Responses of the cells of the perceptron described in Figure 5 showing how to solve the xor problemIn addition to training a perceptron with hidden layers to make nonlinear transformationsbetween input and output stimuli, another simpler way of coping with a nonlinearly separableproblem is to recode it in order to make it linearly separable. For example, the xor problemcan be solved if a third input cell is added and provided with the product of the two remainingcells, transforming learning the binary xor into learning the ternary relation:0 0 0 7�! 01 0 0 7�! 10 1 0 7�! 11 1 1 7�! 0 : (1.18)The following set of weights: w1 = 1; w2 = 1; w3 = �2 (1.19)will then solve the xor problem.It has often been claimed that Minsky and Papert's [53] highly critical analysis of theperceptron's failure to cope with nonlinearly separable categorizations was responsible for su-pressing interest in neural network research until the late seventies. As Anderson and Rosenfeld[10] point out in their introductory comments to some classic papers in neural modeling, thisclaim is somewhat exaggerated. Several other factors that may account for the lack of interest in

258 Abdineural networks include: the relatively clumsy nature of the networks, and the fact that the nu-merical algorithms they applied were better implemented and analyzed as numerical techniqueson standard computers. Also, the Zeitgeist at that time favored modeling memory storage ascreating new proteins rather than synaptic modi�cation (because of the success of dna/rna forthe genetic code). So, at best (or at worst) Minsky and Papert gave the �nal blow to an alreadymoribund �eld.2. Linear associatorsThe models presented in this section are known as linear associators. They come in two forms:hetero- and auto-associators. The hetero-associators can be used to learn associations betweeninput and output patterns. The auto-associator is a special case of the hetero-associator in whichthe association between an input pattern and itself is learned. This special case of associatoris used widely as a pattern recognition and pattern completion devices in an auto-associator isable to reconstruct learned patterns when noisy or incomplete versions of the learned patternsare used as \memory keys" [41, 42] (this property is true also for non-linear auto-associators,the linear asociator has, in addition, the advantage of being easy to analyze mathematically aswell as being very e�cient computationally).In what follows, matrix notation is used. A good introduction oriented toward neuralmodeling can be found in [36] and [3].2.1. NotationStimuli are represented by I � 1 vectors fk where the index k indicates the stimulus number.The components of fk specify the stimulus to be applied to the cells of the input layer for thek-th stimulus. In general, input vectors are normalized so that fTk fk = 1. The responses of thenetwork are given by J � 1 vectors denoted gk. The complete set of K stimuli is represented bya K�I matrix denoted F in which the k-th row is fTk . The set of the K responses is representedby a K � J matrix denoted G in which the k-th row is gTk . The J � I synaptic weight matrixis denoted W.The Hebbian learning rule [29] in linear associators sets the change in the synaptic weightsto be proportional to the product of the input and the output. For example, if the associationconsidered is between the k-th input and the k-th response, the weight wi;j corresponding tothe connection between the i-th input cell and the j-th output cell should be proportional tofk;i � gk;j . If the proportionality constant is set to 1, the association between the k-th stimulusand the k-th response leads to the creation of the weight matrixWk = gkfTk : (2.1)The response of the network is obtained by postmultiplication of Wk by the stimulus fk.The response of the associator is denoted ĝk and can be considered as the associator estimation

A neural network primer 259of gk. With just one association stored, it is easy to show that the associator estimates gkperfectly: ĝk =Wkfk = gkfTk fk = gk (2.2)To implement several associations, the Wk matrices are summed in order to give W:W =XWk =X gkfTk =GTF : (2.3)The estimation of the k-th response by the associator is obtained as:ĝk =Wfk = KX̀=1 g`f T̀ fk = gk + X̀6=k cos(f`; fk)g` : (2.4)From this last equation, it is clear that the response of the associator involves some cross-talk or interference between the stored patterns that may result in less than perfect recall of thelearned associations. In general, the quality of the associator estimation is evaluated by com-paring ĝk with gk. A popular estimator is the cosine between ĝk and gk: cos(ĝk;gk). However,if the stimuli are pairwise orthogonal (i.e., if fTk fk0 = 0, for all k 6= k0) then cos(fk; fk0) = 0and ĝk = gk, and consequently, the responses of the associator estimate perfectly the targetresponses.2.1.1. Linear auto-associatorAs noted, the linear auto-associator (cf., Valentin et al. in this volume) is a particular case ofthe linear-associator. The goal of this network is to associate a set of stimuli to itself, (i.e., Gis equal to F). The weight matrix W is now equal to FTF, and is the familiar \cross-product"matrix of standard linear multivariate analysis.When the stimulus set is composed of non-orthogonal stimuli, the associator will fail toreconstruct perfectly the stimuli that were stored (cf. Equation 2.4). On the other hand, somenew patterns will be perfectly reconstructed by the associator, creating in a way, the equivalentof a \false alarm" or \false recognition." These patterns are de�ned by the equation:Wuk = �kuk with: uTk uk = 1 : (2.5)They are the eigenvectors of W and �k is the eigenvalue associated with the k-th eigenvector.Within a multivariate analysis framework, the eigenvectors of W are the principal componentsof a Q-principal component analysis of the stimuli [38]. In general, principal component analysisis used to analyze the variables describing the stimuli, Q-analysis is obtained by transposing thedata matrix which is equivalent to switching the rôle of the variables and the stimuli. Theseeigenvectors can be interpreted as prototypes, macro-characteristics, or, even, hidden dimensions[2, 8, 11, 57, 58].

260 Abdi2.1.2. Back to the general caseIn order to improve the performance of linear associators (i.e., in order to increase the cosinebetween the ĝk's and gk's), several learning rules have been proposed. The most popular oneis clearly the Widrow-Ho� learning rule (alias Delta learning rule) previously described for theperceptron. This is an iterative procedure correcting the error between the target response andthe actual response of the network. In matrix notation, the Widrow-Ho� rule is:W(t+1) =W(t) + �(gk �W(t)fk)fTk ; (2.6)with W(t) being the weight matrix at step t, � being a (small) positive constant, and k beingrandomly chosen.This algorithm will (eventually) converge if � is properly chosen. Actually, the analysisof the Widrow-Ho� learning rule involves only the matrix of eigenvectors of FTF denoted U,the diagonal matrix of their eigenvalues denoted �, and the matrix of eigenvectors of FFTdenoted V, as well as � and t (cf. [3]). The analysis is facilitated by using the singular valuedecomposition of F which expresses the matrix F as:F = V� 12UT : (2.7)With these notations, W(t) can be computed as:W(t) = GUn�� 12 hI� (I� ��)tioVT : (2.8)From Equation 2.8, it can be seen that convergence is assured if0 < � < 2��1max (with �max being the largest eigenvalue of �). (2.9)When convergence is reached, the weight matrix is then (cf. [42]):fW = GF+ (2.10)with: F+ = V�� 12UT (2.11)denoting the Moore-Penrose pseudo inverse of F.For an auto-associative memory, the Widrow-Ho� learning rule will converge to:fW = FF+ = UUT with: U being the matrix of eigenvectors of W. (2.12)The matrix W is said to have been sphericized (i.e., all its non-zero eigenvalues are now equalto one).

A neural network primer 2613. Non-linear systems (auto-associator)As its name indicates, a linear associator (cf. also Equation 2.4) will give a response that is alinear combination of all the input values. This property can be undesirable sometimes. As withthe perceptron, several nonlinear extensions of the auto-associator that can remedy this problemhave been developed. These models include the Hop�eld net [33, 34], and Anderson's Brain-State-in-a-Box (abreviated as BSB, [8]). While these models originated within very di�erenttraditions, they are in fact quite similar [27]. Introduced from a physics perspective, the popu-larity of the Hop�eld model, was perhaps one impetus of the current resurgence of interest inneural networks [8, 9]. Acting as content-addressable memories, these nonlinear auto-associatorstry to �nd, among the patterns stored, the one closest to the stimulus. In the present paper,I will describe Hop�eld nets in some detail as an example of a nonlinear auto-associator. Itis worth noting, however, that the BSB model, published prior to the Hop�eld model, wasproposed as a psychological model of memory and shares many of the essential features of theHop�eld model. Readers interested in this perspective on neural networks will �nd a detailedpresentation in the Anderson and Rosenfeld collection of papers [8].3.1. Hop�eld NetsThe Hop�eld net is an asynchronous nonlinear auto-associator. This network is named for J.J.Hop�eld (a physicist from Caltech) who gave a detailed analysis of these types of networks intwo papers which have since become classic papers ([33, 34]). The k-th stimulus to be stored isrepresented by an I�1 binary vector denoted fk, taking values 0 or 1. The set of the thresholdsfor the I units is denoted ### = [#i], with #i being the threshold of the i-th unit. From the fkvectors, new \recoded" vectors denoted hk are created:hk = 2fk � 1I�1 (i.e., the 0 values are replaced by �1.) (3.1)with 1I�1 being an I � 1 vector of ones.The weight matrix is obtained as W =Xk hkhTk : (3.2)A stimulus is \recalled" by presenting a \cue" to the matrix, and letting the memorystabilize to an estimation. More formally, when fk is used as a cue, recall from the memory isobtained through the following steps:0. Initialization. Let t = 0 (t is the number of the current iteration). Set �fk(t) = �fk(0) = fk.1. Let f̂k(t) =W �fk(t�1).2. Let

262 Abdi �fk(t) = [�f (t)i;k] fi = 1 : : : Ig; with(�f (t)i;k = 1 i� f̂ (t)i;k � #i�f (t)i;k = 0 i� f̂ (t)i;k < #i : (3.3)This amounts to setting the cells whose activation level is larger than or equal to their thresholdto the value 1, and to setting the cells whose activation level is smaller than their threshold tothe value of 0.3. Compare �fk(t�1) and �fk(t):If �fk(t�1) 6= �fk(t);then change t to t+ 1 and re-iterate the procedure from step 1. If�fk(t�1) = �fk(t)(or �fk(t�1) ' �fk(t); if an approximation is judged su�cient) then a stable response has beenfound and the procedure can stop.The stable responses constitute the attractors of the system ([33, 34], for the BSB modelscf. [27]). This algorithm is equivalent to searching for the binary vector s minimizing the energyvalues Es computed as: Es = �sWsT + ###sT (3.4)using a steepest descent algorithm with starting point fk. It can be shown that Es is decreasing(or stays constant) at each iteration. This property is often expressed by saying that Es is aLyapounov function of the dynamical system implemented by the network [13, 47, 63, 73, 77].In general, the minimum reached by the network is a local minimum. In order to improve thechances of reaching a global minimum several equivalent techniques can be used: the Boltzmannmachines [5, 32], Markov random �elds [4, 26, 54], or simulated annealing [1, 40, 78].3.2. Boltzmann machinesBoltzmann machines can be seen as a variation on the theme of Hop�eld networks. The essentialidea is to used the activation of the cell as a probability, and to use it to switch the state ofa cell to the on (i.e., to the value 1) or o� (i.e., to the value 0) state. The unique aspectof the Boltzmann machine is that it can be seen as analogous to a physical system in whichthe probabilities of changing the states of cells in the network can be a�ected by a global\temperature" parameter. When the temperature is high, neurons change states with higherprobability than when the temperature is low. During the stabilization process, the temperatureof the network is gradually lowered, (a process known as \annealing" due to its similarity to theannealing of metals), resulting in a system that becomes progressively more stable over time.

A neural network primer 263Formally, the local energy di�erence at the i-th unit for the con�guration s is de�ned as�Ei = wTi s� #j (with wi: i-th column of W) : (3.5)This is equivalent to computing for the i-th unit the di�erence of energy between the con�gu-ration with the unit being on and the con�guration with the unit being o�.In the previous algorithm describing the Hop�eld network, step 2 will be modi�ed bydeciding to set �f (t)i;k equal to 1 with the probabilityPi = 11 + e��Ei=T (3.6)where T is a real positive value corresponding to the temperature of the system (this is knownas the logistic, or Boltzmann, or Fermi equation). As mentioned at the beginning of this section,at high temperatures, the system tends to be less in
uenced by the value of �Ei. When T tendstowards 0, the logistic function degenerates into the step function and the Boltzmann machinebecomes a Hop�eld net. When T tends towards in�nity, Pi tends towards :5 no matter whatthe value of �Ei is, and, as a consequence, the Boltzmann machine tends to behave randomly(i.e., it ignores the information given by the system).The probability of transiting from one state to the other can be expressed as a ratio ofprobabilities. For example, to evaluate the probability of reaching the state s from the state s0with energy Es and Es0 respectively, compute the ratio of probabilities which is:PsPs0 = e�Es=Te�Es0=T = e�(Es�Es0)=T : (3.7)As the temperature rises, this ratio gets closer to the value 1, indicating that it is easier at hightemperature to go from one state to the other. It should be possible, therefore, to escape localminima (but at the price of increasing the risk of reaching a solution far from a minimum). Inpractice, the strategy is to start the process at a relatively high temperature and then to reducethe temperature progressively very slowly. It is relatively fair to say that �nding the properannealing schedule for a given problem can be considered as an intuitive art more than anythingelse. This procedure can also be analyzed with reference to spin glasses and mean �eld theories,which are domains relatively well studied in physics [30, 31]. This may explain the popularityof these neural networks among physicists and the strong impact Hop�eld's paper has had onthe multidisciplinary nature of the neural networks �eld.

264 Abdi
OUTPUT LAYERHIDDEN LAYER

h g

INPUT

f

W Z
matrix

Connection
matrix

Connection

Modifiable
synapses

Modifiable
synapses

z jlwli

J: neuronsL: neuronsI: neuronsFig. 6. | The architecture of a typical error back-propagation network. It is composed of (atleast) three layers, one input layer, one (or several) hidden layer(s), and one output layer. The inputlayer is made of I cells or neurons, the hidden layer of L cells or neurons, the output layer of J cellsor neurons. The weights w`;i of the connections from the input layer to the hidden layer are stored inthe L � I matrix W. The weights zj;` of the connections from the hidden layer to the output layerare stored in the J �L matrix Z. The k-th stimulus is denoted fk, the corresponding response of thehidden layer is denoted hk, the response of the output layer is denoted ĝk, and the correspondingtarget response is denoted gk.4. Hidden layer networks and back-propagationAs noted previously in the perceptron section, it can be shown that if one or more \hidden layers"are added between the input and output cell layers, several of the limitations of perceptronscan be overcome. The main problem that plagued early neural network researchers was theabsence of a learning rule to adjust the weights of the hidden layer(s) based on the set of stimulito be learned. In other words, while it was easy to note when the activation of an output cellwas incorrect, assigning \blame" to individual connections within multi-layered networks was adi�cult problem. Since then, several rules have been proposed, the most popular of which iserror back-propagation, discovered in the late sixties by Bryson and Ho [16], and rediscoveredby Werbos in 1974 [83]. It was, once again, independently rediscovered and popularized in theearly eighties by several authors (Le Cun, [45]; Parker, [60]; Rumelhart, Hinton and Williams[72], with these latter authors being its most ardent proselytes).An error back-propagation network is composed of at least three layers of cells: an inputlayer, one or more hidden layers, and an output layer. In this introduction, I assume for

A neural network primer 265simplicity, but without loss of generality, that the networks have only one hidden layer. Aback-propagation network is described in Figure 6.The essential idea behind back-propagation is actually quite simple and straighforward.Like the perceptron, back-propagation networks use supervised learning: they need to knowwhat response they should give for a given stimulus. The cells of the output layer compute theerror as the di�erence between the actual response of the network and the intended response.The synaptic weights on these cells will be adjusted using the standard Widrow-Ho� learningrule for nonlinear units. In other words, the connection weights will be adjusted in order todecrease the error signal if the same stimulus is presented again. The error is propagatedbackward through the same connections and synaptic weights to the cells of the hidden layer.Next, the error at the hidden cells is estimated as the weighted average of the error of the outputcells. The values of the connections zj;` are used as the weights for computing the weightedaverage. So, for example, if an output cell has a large positive error, and if the synaptic weightbetween a given hidden cell and the output cell is large, it implies that the hidden cell has alarge part in the output cell error. Thus, the error signal for the hidden cell should show a largecomponent of error coming from this output cell. After the error signal of each hidden cell hasbeen estimated, its synaptic weights are adjusted appropriately using the standard Widrow-Ho�learning rule, exactly as for the output cells.More precisely, for a network with one input layer, one hidden layer, and one output layer,the following notations are de�ned:� fk: the I � 1 vector representing the k-th stimulus (i.e., the input layer is made of I cells).� hk: the L � 1 vector representing the response of the hidden layer for the k-th stimulus(i.e., the hidden layer is made of L cells).� ĝk: the J � 1 vector representing the response of the output layer for the k-th stimulus(i.e., the output layer is made of J cells).� gk: the J � 1 vector representing the target (or desired) response of the output layer forthe k-th stimulus.� W: the L�I matrix of synaptic weights of the connections between the I cells of the inputlayer and the L cells of the hidden layer; w`;i gives the weight of the connection betweenthe i-th input cell and the `-th cell of the hidden layer.� Z: the J � L matrix storing the weights of the connections between the hidden layer andthe output layer; zj;` gives the weight of the connection between the `-th cell of the hiddenlayer and the j-th cell of the output layer.In order to use error back-propagation, the response of a cell should be a nonlinear functionof the cell activation (technically speaking, the nonlinearity is necessary only for the hiddenlayer cells). Denoting the activation of cell n by an, its response will beon = f(an) : (4.1)

266 Abdi
-8 -6 -4 -2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
y=f(x)

x

y

Fig. 7. | Graph of the logistic function.While there are several acceptable functions, the most widely used is the logistic function drawnin Figure 7. It is given by the following Equation (cf., also Equation 3.6):f(x) = 11 + e�x : (4.2)The logistic function maps the activation into the continous interval [0; 1]. One reason for itspopularity is the ease of computing its derivative:f 0(x) = � e�x(1 + e�x)2 = f(x)[1 � f(x)] : (4.3)The answer of the network to an input stimulus is given by a forward transmission of thestimulus. First, the signal is forwarded from the input layer to the hidden layer. The activationof the hidden layer cells is computed and then tranformed or �ltered using a nonlinear function(e.g., the logistic function). So, if the k-th stimulus, noted fk, is presented, the response of thehidden layer will be: hk = f(Wfk) : (4.4)Next, the hidden layer response is forwarded to the output layer cells. The activation andtransformation of these cells is computed in a manner similar to that used for the hidden layercells. So, the response of the output layer to the k-th stimulus will be (assuming for conveniencethat the same nonlinear function is used for all the cells):ĝk = f(Zhk) : (4.5)

A neural network primer 267Since back-propagation is a supervised learning technique, the output layer cells must beprovided with the expected answer. Once the error signal at the output cells has been de-termined, the process of correcting the synaptic weights in order to minimize the error signal(actually, the mean square error signal) begins. The correction procedure is the same for all thecells, the only di�erence is that the procedure used to evaluate the error signal di�ers betweenthe hidden layer cells and the output layer cells.For the cells of the output layer, the error is evaluated by comparing the actual responseof the cell with its expected response. So, the error for output cell j isej = gj � ĝj :Using vector notation, the J � 1 error vector of the output cells for the k-th stimulus is:ek = (gk � ĝk) : (4.6)The error signal, combines the cell error with its activation. Speci�cally, the error signal isweighted by the derivative of the output activation (e.g., as given in Equation 4.3). Precisely:���output,k = f 0(Zhk) ~ (ek) = ĝk ~ (1� ĝk)~ (gk � ĝk) ; (4.7)where ~ denotes the Hadamar product (i.e., the elementwise product, cf. [74, 35]) and 1 denotesa unitary vector of the appropriate order. The function f is assumed to be the logistic functionfor the second term of the previous Equation to be simpli�ed as it is.The learning rule has the form of the learning rule described previously for the perceptronor for the linear associator. It corrects the matrix Z iteratively. At step (t + 1), the weightsstored in matrix Z become:Z(t+1) = Z(t) + ����output,khTk = Z(t) +�tZ (4.8)(with k randomly chosen, and � being a small positive constant).For the cells of the hidden layer, the error signal cannot be evaluated by direct comparisonwith the target since the target is not de�ned at that level. The error signal is estimated as afunction of the output error, of the synaptic weights, and of the (derivative of the) response ofthe hidden layer cells. Precisely, the error signal vector for the hidden layer cells is computed as���hidden,k = f 0(Wfk) ~ (ZT���output, k) = hk ~ (1� hk)~ (ZT ���output, k) : (4.9)So the error signal from the output layer is backpropagated to the hidden layer throughthe weights of the connections between the output layer and the hidden layer (this is the termZT���output, k in Equation 4.9). This amounts to computing the hidden layer cell's error componentas the weighted average of the error signal of the output layer cells. Then, the error componentfor each cell is weighted by the derivative of its response in order to create the error signal [thisis the term f 0(Wfk) in Equation 4.9].

268 AbdiWhen the error signal for the cells in the hidden layer has been computed, learning isimplemented as for the output layer cells. During the learning process, the matrixW is correctediteratively. At step (t + 1), the weights stored in matrix W become:W(t+1) =W(t) + ����hidden,kfTk =W(t) +�tW : (4.10)In the next section, I show that back-propagation converges (if � is appropriately chosen)toward a local minimum of the mean square of the error for the output layer. Speci�cally,back-propagation implements gradient descent, a well-known procedure in numerical analysis.4.1. Error back-propagation and gradient descentThe gradient descent method is a relatively well-known method of numerical analysis [20, 22,61, 81] used to locate iteratively a minimum of a nonlinear derivable function.The gradient of a function is de�ned as the matrix of the (�rst) derivative of that function.Suppose that the parameters of a function are stored in a matrix denoted Z and that the functionunder consideration is y = g(Z) (4.11)(i.e., the problem is to �nd the matrix Z so that y reaches its minimum value). The algorithmproceeds as follows:� 1. Chose arbitrarily the initial values of Z(t=0). In general, these values will be chosenrandomly, but a �rst good guess can also be used if any can be made.� 2. Compute the (local) gradient of g denoted by rg as:rg = @g(Z(t))@Z(t) : (4.12)� 3. Change the values of Z(t) in the inverse direction of its gradient (this is because thegradient indicates the direction in which the function increases; so going in the inversedirection indicates the direction of a possible minimum). If � denotes a small positiveconstant, the correction to apply to Z(t) is:Z(t+1) = Z(t) +�tZ = Z(t) � �rg = Z(t) � � @g(Z(t))@Z(t) : (4.13)� 4. If Z(t) = Z(t+1) (or Z(t) ' Z(t+1) if an approximation is su�cient) (4.14)then stop the procedure, otherwise reiterate steps 2 and 3.For an error back-propagation network, the error function is de�ned as the sum of squares ofthe di�erences between the expected values gk and the responses of the network ĝk. Speci�cally,the error function for the k-th response is de�ned as:Ek = 12 (gk � ĝk)T (gk � ĝk) = 12 (gTk gk + ĝTk ĝk � 2ĝTk gk) : (4.15)

A neural network primer 2694.1.1. Gradient correction for the output layerFor the output layer, the matrix of parameters is the weight matrix Z. The gradient of Ekrelative to Z is computed using the chain rule adapted to matrices (cf. [50, 51]):rZEk = @Ek@Z = @Ek@ĝk @ĝk@Zhk @Zhk@Z : (4.16)Evaluating each of the terms of Equation 4.16 gives:@Ek@ĝk = �(gk � ĝk)T ; (4.17)assuming f is the logistic function, and with ĝk = f(Zhk):@ĝk@Zhk = ĝTk ~ (1� ĝk)T ; (4.18)and @Zhk@Z = hk : (4.19)The correction for Z at step t is then proportional to�rZEk = (gk � ĝk)T ~ ĝTk ~ (1� ĝk)Thk = ���Toutput,khk : (4.20)Using � as a small constant, this is equivalent to de�ning the change at step t as:�tZ = ����output,khTk (4.21)as indicated in Equation 4.8.4.1.2. Gradient correction for the hidden layerFor the hidden layer, the matrix of parameters is the weight matrix W. The gradient of Ekrelative to W is computed using, once again, the chain rule adapted to matrices:rWEk = @Ek@W = @Ek@ĝk @ĝk@Zhk @Zhk@hk @hk@Wfk @Wfk@W : (4.22)The �rst two terms of Equation 4.22 have been de�ned previously (cf. Equation 4.16) andcorrespond to ����Toutput, k. Evaluating the other terms gives:@Zhk@hk = ZT ; (4.23)

270 Abdiassuming f is the logistic function, and with hk = f(Wfk),@hk@Wfk = hTk ~ (1� hk)T ; (4.24)and, �nally: @Wfk@W = fk : (4.25)Hence, the correction for W at step t is proportional to:�rWEk = ���output,kZT ~ hTk ~ (1� hk)T fk = ���Thidden,kfk : (4.26)Using � as a small constant and transposing fk is equivalent to de�ning the change at step t as:�tW = ����hidden,kfTk (4.27)as indicated in Equation 4.10.4.1.3. Gradient and linear associatorsThe Widrow-Ho� learning rule used for linear associators can be interpreted also as a gradientdescent technique. With the notation de�ned in the previous sections, the function f used bythe cell to transform the activation in a response is now very simple (it is a linear transformationof the activation, hence the name linear associator, cf. Equations 2.4 and 4.1):on = f(an) = an : (4.28)The response of the associator becomes (cf. Equation 2.4):ĝk =Wfk :The error function is as previously de�ned (cf. Equation 4.15):Ek = 12 (gk � ĝk)T (gk � ĝk) = 12 (gTk gk + ĝTk ĝk � 2ĝTk gk) :Since a linear associator has only one set of weights, the problem is to �nd the values ofW minimizing Ek for all k. The gradient of Ek relative to W is evaluated, as usual, using thechain rule rewritten for matrices.rWEk = @Ek@W = @Ek@ĝk @ĝk@W : (4.29)As noted previously (cf. Equation 4.16), the �rst term on the right of Equation 4.29 is:@Ek@ĝk = �(gk � ĝk)T ;

A neural network primer 271and with ĝk = f(Wfk) =Wfk, the second term of Equation 4.29 becomes@ĝk@W = @Wfk@W = fk : (4.30)The correction for W at step t should be proportional to:�rWEk = �@Ek@W = (gk � ĝk)T fk : (4.31)Using � as the proportionality constant, the correction for W at step t becomes:�tW = �(gk � ĝk)fk = �(gk �W(t)fk)fTk (4.32)as indicated in Equations 1.5 and 2.6.4.2. Evaluation of Back-propagationIt is probably fair to say that the \rediscovery" of back-propagation in the mid-eighties was apivotal factor in the renaissance of neural networks. With this new technique, neural networkswere now able to overcome the primary weaknesses of the perceptron that became clear in thesixties. In particular, neural networks were now able to solve nonlinear mappings such as thoserequired to solve the xor and parity problems, as well as most of the so-called hard problemsthat Minsky and Papert [53] noted as failures of the perceptron.Cognitive scientists, in addition, found back-propagation a useful tool for exploring issuesconcerning the representation of knowledge. In this case, the hidden layer acts as the internalknowledge representation a network uses to make the transformation from input to output. Theinterest for cognitive scientists, therefore, is to �nd how the hidden layer develops weights thatsolve the problem. For example, netalk was designed by Rosenberg and Sejnowski [67] forthe task of converting written English into spoken English. They found that the hidden layersdeveloped a representation somewhat analogous to the phonemes of English (e.g., consonantsversus vowels, voiced versus unvoiced phonemes).Taking into account its popularity and the number of its applications, it is tempting totrumpet back-propagation as a panacea for computational models of cognition and biologicalsignal processing. Some dedicated proselytes have, in fact, had di�culty resisting such a temp-tation. There are, however, a number of serious drawbacks to the technique. The �rst one isobvious. In order to implement back-propagation, the network needs to be provided with thecorrect answer (i.e., back-propagation is a supervised technique). That, by itself, eliminates allapplications for which the task is to �nd stimulus classes a posteriori or without supervision.A second problem comes from the number of iterations needed for the network to converge.The empirical evidence of the last �ve years or so has indicated that even for a simple problemlike learning the xor function, the number of iterations required for convergence can reach intothe thousands, when a perceptron will solve it as a ternary relation in less than 10 iterations

272 Abdi transformation
Radial basis Linear

hetero-associator

-fk|| c ||1

-fk|| c ||2

-fk|| c ||3

f

Inputs

c

Centers

o
Output

kk kFig. 8. | The architecture of a typical radial basis function network. The hidden layercomputes the distance from the input to each of the centers (each center corresponds to a cell of thehidden layer). The cells of the hidden layer transform their activation (i.e., the distance from theinput) in response using a nonlinear transformation (typically a Gaussian function). The cells of theoutput layer behave like a standard linear hetero-associator.(cf. [3]). Finally, and perhaps most problematic, it is always di�cult to determine, for a givenproblem, the best architecture in terms of number of hidden layers as well as number of cellsper layer.Despite these problems, back-propagation is still widely used. Several alternative models,that attempt to overcome its limitations, are currently under development. One of these is theRadial basis function network described in the next section.5. Radial basis function networksRadial basis function networks are a recent addition to the neural-modeler toolbox [19, 15, 59,64, 65]. The architecture of a typical radial basis function network is shown in Figure 8.These networks are used for �nding an approximation of a nonlinear function as well as for�nding interpolating values of a function de�ned only on a �nite subset of real numbers. The

A neural network primer 273essential idea is to implement a complex nonlinear mapping from the input pattern space to theoutput pattern space as a two-step process. The �rst step is a simple nonlinear mapping fromthe input layer to the hidden layer. The second step implements a linear transformation fromthe hidden layer to the output layer. Learning occurs only at the level of the synapses betweenthe hidden layer and the output layer. Because these connections are linear, learning can bevery fast.Speci�cally, the general problem is to approximate an arbitrary function f from RI to RJ(i.e., f associates a J � 1 dimensional vector gk in response to a I � 1 dimensional vector fk)de�ned on K observations such thatgk = f(fk) for k = f1; : : : ;Kg : (5.1)The general idea is to approximate f by a weighted sum of (in general nonlinear) functions �(named the basis functions) such that Equation 5.1 is approximated bygk � X̀w`�(fk) : (5.2)This technique is called radial basis function approximation when instead of using thevalues fk directly, several \centers" are chosen (either arbitrarily or in some speci�c way) andthe distance from the vectors fk to these centers is used in Equation 5.2 instead of the fk values.A center can be any I-dimensional vector (so that the distance between the centers and thefk is always de�ned). Speci�cally, if a set of L centers c` is chosen (with each center being an Idimensional vector), Equation 5.1 is approximated asgk � X̀w`�(kfk � c`k) : (5.3)When the set of centers (the c`'s) is the same set as the input set (i.e., the fk's), the radialbasis function network is used for �nding an interpolation function valid for new values of fk0 and�tting f perfectly for the K observations fk. When the set of centers di�ers from the input set(i.e., the fk), it contains, in general, a smaller number of elements (i.e., L < K). The problem,then, can be seen as a problem of approximating the function f by a set of simpler functions �.In both cases, the objective is close to some rather well-known techniques in numerical analysis(e.g., spline interpolations) with the di�erence that a distance to the centers is used in theprocess rather than the raw data.Equation 5.3 can be rewritten in a more compact form with the notations de�ned in thesection on the hetero-associator. Denote by C the L� I matrix of the centers (i.e., cT̀ is the`-th row of C). The distances of the K observations to the L centers are gathered in a L �Kmatrix D with the generic term d`;k giving the euclidean distance from observation k to center`: D = [d`;k] = �qcT̀ fk� =q(C~C) � 1I�K + 1L�I(FT ~ FT) � 2�CFT (5.4)

274 Abdiwith 1I�K being a I �K matrix of 1's, the square root function being applied element-wise tothe matrix, and F being the K � I matrix of the K input patterns applied to the I input cells.Then, the problem is to �nd a L� J matrix W such that:G � [�(DT)]W (5.5)with the function � being applied element-wise to the elements of D, and G being the K � Jmatrix of the K output patterns.If the matrix �(D) is squared, and non-singular, the solution for the matrixW is obviously:W = [�(D)]�1G : (5.6)If �(D) is singular or rectangular, a least-squares approximation is given byW = [�(D)]+G with [�(D)]+ being the Moore-Penrose inverse of [�(D)]: (5.7)If the testing set is di�erent from the learning set, then the distance from the elements ofthe testing set to the centers needs to be computed for each of the elements of the testing set.This distance is then transformed by the � function before being multiplied by the matrix Wto give the estimation of the response to the testing set by the radial basis function network.Several choices are possible for the � functions. One of the most popular choices is theGaussian function. �(x) = 1p2��2 expf�x2=2�2g (5.8)with �2 being the variance of the Gaussian distribution. The variance can also be approximatedfor each center separately if necessary.One reason for the popularity of the Gaussian transformation is that it insures that whenD is squared, and when the centers are not redundant (i.e., no center is present twice), thenthe matrix �(D) is not only non-singular but also positive de�nite [52] (even though as D is adistance matrix, it is in general not full rank and even not positive semi-de�nite).In terms of neural networks, this is equivalent to having a �rst hidden layer whose purposeis to compute the distance from the input to each of the centers. Each cell of the hiddenlayer represents a center. Then, the cells of the hidden layer transform their activation (i.e.,the distance from the input to the centers) into a response using the � function. The cells ofthe output layer behave exactly like the cells of a standard linear hetero-associator using theWidrow-Ho� learning rule.

A neural network primer 275
-2 0 2 4 6 8 10 12

1

2

3

4

5
Original data

-2 0 2 4 6 8 10 12

1

2

3

4

5
RBF approximation with 7 centers, σ=1

Fig. 9. | Radial basis function approximation example.5.1. Radial basis function networks: An exampleTo illustrate a simple radial basis function network, suppose that the function to be approxi-mated associates the following one-dimensional (i.e., I = J = 1) set of K = 7 stimuli to theirresponse: f1 = 0 7�! g1 = 1f2 = 2 7�! g2 = 1f3 = 3 7�! g3 = 2f4 = 4 7�! g4 = 3f5 = 5 7�! g5 = 2f6 = 6 7�! g6 = 1f7 = 8 7�! g3 = 1 (5.9)Or, using a matrix notation, the set of stimuli is stored in the K � I = 7� 1 matrix F, and the

276 Abdi
-2 2 4 6 8 10 12

1

2

3

4

5
RBF approximation with 5 centers, σ=1

-2 2 4 6 8 10 12
0

1

2

3

4

5
RBF approximation with 5 centers, σ=.75

Fig. 10. | Radial basis function approximation example: the e�ect of di�erent values ofsigma. Notice how the �rst approximation with � = 1 gives a much better �t to the data than theapproximation with � = :75.set of responses is stored in the K � J = 7� 1 matrix G:F = [0; 2; 3; 4; 5; 6; 8]T and G = [1; 1; 2; 3; 2; 1; 1]T : (5.10)Suppose that the set of L centers is the same as the set of inputs:C = F = [0; 2; 3; 4; 5; 6; 8]T : (5.11)the matrix D is then D = 266666664 0 2 3 4 5 6 82 0 1 2 3 4 63 1 0 1 2 3 54 2 1 0 1 2 45 3 2 1 0 1 36 4 3 2 1 0 28 6 5 4 3 2 0377777775 : (5.12)

A neural network primer 277
-2 0 2 4 6 8 10 12

1

2

3

4

5
RBF approximation with 5 centers =[0 2 4 6 8], σ=1

-2 0 2 4 6 8 10 12

1

2

3

4

5
RBF approximation with 5 centers =[0 1 4 7 8], σ=1

Fig. 11. | The e�ect of di�erent centers.Using the Gaussian transformation with �2 = 1 the matrix D is transformed in:�(D) = [�(di;j)] = � 1p2� expf�d2i;j=2g� (5.13)which gives:�(D) = 266666664 0:3989 0:0540 0:0044 0:0001 0 0 00:0540 0:3989 0:2420 0:0540 0:0044 0:0001 00:0044 0:2420 0:3989 0:2420 0:0540 0:0044 00:0001 0:0540 0:2420 0:3989 0:2420 0:0540 0:00010 0:0044 0:0540 0:2420 0:3989 0:2420 0:00440 0:0001 0:0044 0:0540 0:2420 0:3989 0:05400 0 0 0:0001 0:0044 0:0540 0:3989377777775 : (5.14)The optimum matrix of weights which would be found by a hetero-associator can be com-

278 Abdiputed directly by inversion of the matrix [�(D)][�(D)]�1 = 266666664 2:5866 �0:6348 0:5445 �0:3520 0:1932 �0:0765 0:0083�0:6348 5:0744 �4:7701 3:1832 �1:7667 0:7024 �0:07650:5445 �4:7701 9:3173 �7:4080 4:3547 �1:7667 0:1932�0:3520 3:1832 �7:4080 10:6317 �7:4080 3:1832 �0:35200:1932 �1:7667 4:3547 �7:4080 9:3173 �4:7701 0:5445�0:0765 0:7024 �1:7667 3:1832 �4:7701 5:0744 �0:63480:0083 �0:0765 0:1932 �0:3520 0:5445 �0:6348 2:5866377777775(5.15)andW = [�(D)]�1G = [2:3029; 1:5415; �0:6794; 7:9252; �0:6794; 1:5415; 2:3029]T : (5.16)To calculate the answer of the radial basis function network to a stimulus (old or new), itsu�ces to compute the distance from that stimulus to the 7 centers, to transform the distancematrix with the Gaussian function and to multiply it by the matrix W. For example, theresponse of the network to the new stimulus f = 1 will beo = �([dc`;f])W = �8>>>>>>><>>>>>>>:266666664 11234573777777759>>>>>>>=>>>>>>>; �W = 266666664 0:24200:24200:05400:00440:00010:00000:0000377777775�W = :9286where dc`;f denotes the distance from the input f to the `-th center.The approximation given by the radial basis function network is illustrated in Figure 9.bfor the set of input patterns belonging to the interval [�1 9]. When compared with a straightline approximation (in Figure 9.a) the network approximation appears quite smooth. Note, also,that, as required, the approximation is perfect for the elements of the training set.5.1.1. The choice of centers and �'s for an approximation radial basis function networkWhen a radial basis function network is used for approximating a function (i.e., when theset of centers is smaller than the set of training stimuli), the choice of values for � becomesvery important. This is illustrated in Figure 10.a and 10.b, in which the approximation of theprevious data set are displayed. The set of centers is now composed of the 5 values:C = [�1; 2; 4; 6; 9]T (5.17)Figure 10.a displays the results of the approximation for � = 1, and Figure 9.b displays theresults of the approximation for � = :75. As the comparison makes clear, the choice of �strongly in
uences the quality of the approximation.

A neural network primer 279The choice of the centers (as well as their number) is also important as illustrated byFigure 11.a and 11.b in which the approximation with the set of centers C = [0; 2; 4; 6; 8]T iscompared with the set of centers C = [0; 1; 4; 7; 8]T .The set of centers is sometimes learned using an unsupervised learning technique like, forexample, k-means. The variance of the � function can, similarly be approximated from thesample. However, in both cases choosing these two sets of parameters can be a very delicateoperation.6. ConclusionIn this introductory paper, I have presented some basic tools from the connectionist modelingtoolbox. Obviously, this is only an overview of the �eld. Some examples of practical applicationsand theoretical developments are presented in the following papers of this volume.The reader seeking a more detailed introduction to connectionist modeling can consult,among other references, the following recent sources: Aleksander & Morton [6]; Hecht-Nielsen[30]; Kampf & Hasler [37]; Khanna [39]; M�uller & Reinhardt [55]; Perez [62]; Simpson [79];Zeidenberg [86]; Anderson et al.[9]; Bechtel & Abrahmson [14]; Freeman & Skapura [24]; Hertz,Krogh & Palmer [31]; Levine [46]; Quilian [66]; and Abdi [3]. More specialized source of referencecan be found in �elds as varied as physics of complex systems (e.g., Fogelman-Souli�e [23]; Serra& Zanarini [76]; Goles & Martinez [28]; Weisbuch [82]), engineering sciences or signal processing(e.g., Widrow & Stearns [85]; Catlin [18]; Sou�cek [80]; Garner [25]; Kosko [43,44]), and neuro-sciences (e.g., Mac Gregor [49]; Amit [7]).7. AcknowledgementThanks are due to Jay Dowling, Betty Edelman, Alice O'Toole, and Dominique Valentin forcomments on earlier drafts of this paper.References[1] Aarts E., and Korst J., Simulated Annealing and Boltzmann Machines. (Wiley, New York,1989).[2] Abdi H., Generalized approaches for connectionist auto-associative memories: Interpretation,implication and illustration for face processing. In Arti�cial Intelligence and Cognitive Sciences,ed. by Demongeot J. (Manchester University Press, Manchester, 1988) pp. 151{164.[3] Abdi H., Les R�eseaux de Neurones. (Presses Universitaires de Grenoble, Grenoble, 1994).[4] Ackley D.H., A Connectionist Machine for Genetic Hillclimbing. (Kluwer, Norwell (MA), 1987).[5] Ackley D.H., Hinton G.E., and Sejnowski, T.J., A learning algorithm for Boltzmann machines.Cognitive Sci. 9 (1985) 147{169.

280 Abdi[6] Aleksander I. and Morton, H., An Introduction to Neural Computing. (Chapman and Hall,London, 1990).[7] Amit D.J., Modelling Brain Function. (C.U.P., Cambridge, 1989).[8] Anderson J.A., and Mozer M.C., Categorization and selective neurons. In Parallel Models ofAssociative Memory, ed. by Hinton G.E. and Anderson J.A. (Erlbaum, Hillsade, 1981) pp.213{236.[9] Anderson J.A., Pellionisz A. and Rosenfeld E. Neurocomputing II (MIT press, Cambridge, 1991).[10] Anderson J.A., and Rosenfeld E., Neurocomputing. (MIT press, Cambridge, 1987).[11] Anderson J.A., Silverstein J.W., Ritz S.A. and Jones R.S. Distinctive features, categoricalperception, and probability learning: some applications of a neural model. Psychol. Rev. 84(1977) 413{451.[12] Arbib M.A., Brains, Machines, and Mathematics (2nd Edition). (Springer Verlag, New York,1987).[13] Beltrami E., Mathematics for Dynamic Modelling. (Academic press, New York, 1987).[14] Bechtel W. and Abrahamsen A., Connectionim and the Mind. (Blackwell, Oxford, 1991).[15] Broomhead D.D. and Lowe D., Mutivariable functional interpolation and adaptive networks.Complex Systems 2 321{355.[16] Bryson A.E. and Ho Y.C., Applied Optimal Control. (Blaisdell, New-York, 1969).[17] Carpenter G. and Grossberg S., Pattern Recognition by Self-Organizing Neural Networks. (mitPress, Cambridge, 1991).[18] Catlin D.E., Estimation, Control, and the Discrete Kalman Filter. (Springer-Verlag, Berlin,1989).[19] Chen S., Cowan C.F. and Grant P.M., Orthogonal least square learning algorithms for radialbasis function networks. IEEE Transactions on Neural Networks 2 (1991) 302{309.[20] Ciarlet P.G., Introduction to Numerical Linear Algebra and Optimisation. (C.U.P., Cambridge,1989).[21] Duda R.O. and Hart P.E., Pattern Classi�cation and Scene Analysis. (Wiley, New York, 1973).[22] Fletcher R., Practical Methods of Optimization. (Wiley, New York, 1987).[23] Fogelman-Souli�e F., Contribution �a une Th�eorie du Calcul sur R�eseaux. Th�ese d'�etat, IMAGGrenoble, 1985.[24] Freeman J.A. and Skapura D.M., Neural Networks. (Addison-Wesley, Reading MA, 1991).[25] Gardner W.A., Introduction to Random Processes. (McGraw-Hill, New York, 1990).[26] Geman S. and Geman D., Stochastic relaxation, Gibbs distributions, and the bayesian restora-tion of images. IEEE Proc. on Arti�cial and Machine Intelligence 8 (1984) 721{741.[27] Golden R., The \brain-state-in-a-box" neural model is a gradient descent algorithm. Journalof Mathematical Psychology 30 (1986) 73{80.

A neural network primer 281[28] Goles E. and Martinez S., Neural and Automata Networks. (Kluwer, Norwell MA, 1990).[29] Hebb D.O., The Organization of Behavior. (Wiley, New York, 1949).[30] Hecht-Nielsen R., Neurocomputing. (Addison-Wesley, Reading, 1990).[31] Hertz J., Krogh A. and Palmer R.G., Introduction to the Theory of Neural Computing. (Addison-Wesley, Reading, 1991).[32] Hinton G.E. and Sejnowski T.J., Learning and Relearning in Boltzman machine. In ParallelDistributed Processing, ed. by Rumelhart D.E. and McClelland J.L. (MIT Press, Cambridge,1986)[33] Hop�eld J.J., Neural networks and physical system with emergent collective computationalabilities. Proceedings of the National Academy of Science, USA 79 (1982) 6871{6874.[34] Hop�eld J.J., Neurons with graded responses have collective computational abilities. Proceedingof the national academy of Sciences, USA 81 (1984) 3088{2558.[35] Horn R.A. and Johnson, C.R., Matrix Analysis. (C.U.P., Cambridge, 1985).[36] Jordan M.I., An introduction to linear algebra in parallel distributed processing In ParallelDistributed Processing, ed. by Rumelhart D.E. and McClelland J.L. (MIT Press, Cambridge,1986).[37] Kamp Y. and Hasler M., Recursive Neural Networks for Associative Memory. (Wiley, New York,1990).[38] Kerlinger F.N., Foundation of Behavioral Research. (Holt, Rinehart and Winston, New-York,1986).[39] Khanna T., Foundations of Neural Networks. (Addison-Wesley, Reading, 1990).[40] Kirkpatrick S., Gelatt C.D. and Vecchi M.P., Optimization by simulating annealing. Sci. 220(1983) 671{680.[41] Kohonen T., Associative Memory: A System Theoretical Approach. (Springer Verlag, Berlin,1977).[42] Kohonen T., Self Organization and Associative Memory. (Springer Verlag, Berlin, 1984).[43] Kosko B., Neural Network and Fuzzy Systems. (Prentice-Hall, Englewwod Cli�s, 1991).[44] Kosko B., Neural Network for Signal Processing. (Prentice-Hall, Englewwod Cli�s, 1992).[45] Le Cun Y., Learning process in an asymmetric threshold network. In Disordered Systems andBiological Organization, ed. by Bienenstock E., Fogelman Souli�e F. and Weisbuch G. (SpringerVerlag, Berlin, 1986).[46] Levine D.S., Introduction to Neural and Cognitive Modelling. (Erlbaum, Hillsdale, 1991).[47] Luenberger D.G. Introduction to Dynamic Systems. (Wiley, New York, 1979).[48] McCulloch, W.S., Pitts, W., A logical calculus of the ideas immanent in nervous activity. Bull.Math. Phys. 5 (1943) 115{133.[49] MacGregor R.J., Neural and Brain Modelling. (Academic Press, New York, 1987).

282 Abdi[50] Magnus J.R. and Neudecker H., Matrix Di�erential Calculus with Application in Statistics andEconometrics. (Wiley, New York, 1988).[51] Mardsen J.E. and Tromba A.J., Vector Calculus. (Freeman, San Francisco, 1988).[52] Micchelli C.A., Interpolation of scattered data: Distances matrices and conditionally positivede�nite functions. Constructive Approximations (1986) 2 11{32.[53] Minsky M.L. and Papert S.A., Perceptrons. (mit Press, Cambridge, 1969).[54] Moussouris J., Gibbs and Markov random systems with constraints. Journal of StatisticalPhysics 10 (1974) 11{13.[55] Muller B. and Reinhardt J., Neural Networks. (Springer Verlag, Berlin, 1990).[56] Nilsson N.J., Learning Machines. (MacGraw-Hill, New York, 1965).[57] O'Toole A.J. and Abdi, H., Connectionist approaches to visually based feature extraction. InAdvances in Cognitive Psychology 2, ed. by Tiberghien G. (Wiley, London, 1989) pp. 124{140.[58] O'Toole A.J., De�enbacher K., Abdi H. and Bartlett J.C., Simulating the `other-race' e�ect asa problem in perceptual learning. Connection Sci. 3 (1991) 163{178.[59] Park I. and Sandberg I.W., Universal approximation using radial-basis function networks. Neu-ral Computations. 3 (1991) 246{257.[60] Parker D.B., Learning logic. Technical report TR-47, Center for Computational Research inEconomics and Management Science, (Massachusetts Institute of Technology, Cambridge MA,1985).[61] Pierre D.A., Optimization Theory with Applications. (Wiley, New York, 1969).[62] Perez J.C., La R�evolution des Ordinateurs Neuronaux. (Herm�es, Paris, 1990).[63] Perko L., Di�erential Equations and Dynamical Systems. (Springer-Verlag, Berlin, 1991).[64] Poggio T. and Girosi F., Networks for approximation and learning. Proceedings of the IEEE 78(1990) 1481{1497.[65] Powell M.J., Radial basis functions for multivariable interpolation: A review. IMA conferenceon algorithms for the approximation of functions and data (RMCS shrivenham 1985).[66] Quinlan P.T., Connectionism and Psychology. (University of Chicago Press, Chicago, 1991).[67] Rosenberg C.R., Sejnowski T.J., Parallel networks that learn to pronounce English text. Com-plex Systems (1987) 1 145{168.[68] Rosenblatt F., The perceptron: a perceiving and recognizing automation (projet PARA), CornellAeronautical Laboratory Report, 85-460-1 1957.[69] Rosenblatt F., The perceptron: a probabilistic model for information storage and organisationin the brain. Psychological Review 65 (1958) 386-408.[70] Rosenblatt F., Principles of Neurodynamics. (Spartan Books, Washington, 1961).[71] Rumelhart D.E. and McClelland J.L., Parallel Distributed Processing. (MIT Press, Cambridge,1986).

A neural network primer 283[72] Rumelhart D.E., Hinton G.E. and Williams R.J., Learning internal representations by errorpropagation. In Parallel Distributed Processing, ed. by Rumelhart D.E. and McClelland J.L.(MIT Press, Cambridge, 1986).[73] S�anchez D.A., Ordinary Di�erential Equations and Stability Theory: An Introduction. (Free-man, San-Francisco, 1968).[74] Searle S.R., Matrix Algebra Useful for Statistics. (Wiley, New York, 1982).[75] Sebestyen G.S., Decision Making Processes in Pattern Recognition. (Macmillan, New York,1962).[76] Serra R. and Zanarini G., Complex Systems and Cognitive Processes. (Springer-Verlag, Berlin,1990).[77] Seydel R., From Equilibrium to Chaos. (Elsevier, New York, 1988).[78] Siarry P. and Dreyfus G., La M�ethode du Recuit Simul�e. (I.D.S.E.T., Paris, 1988).[79] Simpson P.K., Arti�cial Neural Systems. (Pergamon press, New York, 1990).[80] Sou�cek B., Neural and Concurrent Real-Time Systems. (Wiley, New York, 1989).[81] Strang G., Introduction to Applied Mathematics. (Wellesley-press, Cambridge, 1986).[82] Weisburg G., Complex Systems Dynamics. (Addison-Wesley, Reading, 1991).[83] Werbos P.J., Beyond Regression: New Tools for Prediction and Analysis in the BehavioralSciences. (Doctoral Dissertation Thesis, Havard University, 1974).[84] Widrow B. and Ho� M.E., Adaptative switching circuits. 1960 IRE WESCON ConventionRecords (1960) 96{104.[85] Widrow B. and Stearns S., Adaptive Signal Processing. (Prentice-Hall, New-York, 1985).[86] Zeidenberg M., Neural Network in Arti�cial Intelligence. (Ellis Horwood, Chichester, 1990).

